
1

CS 188: Artificial Intelligence
Spring 2010

Lecture 7: Minimax and Alpha-Beta 

Search

2/9/2010

Pieter Abbeel – UC Berkeley

Many slides adapted from Dan Klein

1

Announcements

� Section format

� Written 2: due Thursday

2

Simple two-player game example

3

8 2 5 6

max

min

Tic-tac-toe Game Tree

4

Deterministic Games

� Many possible formalizations, one is:

� States: S (start at s0)

� Players: P={1...N} (usually take turns)

� Actions: A (may depend on player / state)

� Transition Function: SxA → S

� Terminal Test: S → {t,f}

� Terminal Utilities: SxP → R

� Solution for a player is a policy: S → A

5

Deterministic Single-Player?

� Deterministic, single player, 
perfect information:
� Know the rules
� Know what actions do
� Know when you win
� E.g. Freecell, 8-Puzzle, Rubik’s 

cube
� … it’s just search!
� Slight reinterpretation:

� Each node stores a value: the 
best outcome it can reach

� This is the maximal outcome of 
its children (the max value)

� Note that we don’t have path 
sums as before (utilities at end)

� After search, can pick move that 
leads to best node win loselose

6



2

Deterministic Two-Player

� E.g. tic-tac-toe, chess, 
checkers

� Zero-sum games
� One player maximizes result
� The other minimizes result

� Minimax search

� A state-space search tree
� Players alternate
� Each layer, or ply, consists of 

a round of moves*
� Choose move to position with 

highest minimax value = best 
achievable utility against best 
play

8 2 5 6

max

min

7

* Slightly different from 
the book definition

Minimax Example

8

Minimax Search

9

Minimax Properties

� Optimal against a perfect player.  Otherwise?

� Time complexity?
� O(bm)

� Space complexity?
� O(bm)

� For chess, b ≈ 35, m ≈ 100
� Exact solution is completely infeasible

� But, do we need to explore the whole tree?

10 10 9 100

max

min

11

Pruning

14

3 12 8 2 14 5 2

Alpha-Beta Pruning

� General configuration

� We’re computing the MIN-

VALUE at n

� We’re looping over n’s children

� n’s value estimate is dropping

� a is the best value that MAX 

can get at any choice point 

along the current path

� If n becomes worse than a, 

MAX will avoid it, so can stop 

considering n’s other children

� Define b similarly for MIN

MAX

MIN

MAX

MIN

a

n

16



3

Alpha-Beta Pseudocode

b

v

Alpha-Beta Pruning Properties

� This pruning has no effect on final result at the root

� Values of intermediate nodes might be wrong!

� Good child ordering improves effectiveness of pruning

� With “perfect ordering”:
� Time complexity drops to O(bm/2)

� Doubles solvable depth!

� Full search of, e.g. chess, is still hopeless…

� This is a simple example of metareasoning (computing 
about what to compute)

18

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above

Starting a/b

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above

a=-∞
b=+∞

a=-∞
b=+∞

a=-∞
b=+∞

a=-∞
b=3

a=-∞
b=3

a=-∞
b=3

a=-∞
b=3

a=8
b=3

a=3
b=+∞

a=3
b=+∞

a=3
b=+∞

a=3
b=+∞

a=3
b=2

a=3
b=+∞

a=3
b=14

a=3
b=5

a=3
b=1

Starting a/b

Raising a

Lowering b

Raising a

Resource Limits

� Cannot search to leaves

� Depth-limited search
� Instead, search a limited depth of tree

� Replace terminal utilities with an eval 
function for non-terminal positions

� Guarantee of optimal play is gone

� More plies makes a BIG difference

� Example:
� Suppose we have 100 seconds, can 

explore 10K nodes / sec

� So can check 1M nodes per move
� α-β reaches about depth 8 – decent 

chess program ? ? ? ?

-1 -2 4 9

4

min min

max

-2 4

23

Evaluation Functions

� Function which scores non-terminals

� Ideal function: returns the utility of the position

� In practice: typically weighted linear sum of features:

� e.g. f1(s) = (num white queens – num black queens), etc.

24



4

Why Pacman Can Starve

� He knows his score will go 
up by eating the dot now

� He knows his score will go 
up just as much by eating 
the dot later on

� There are no point-scoring 
opportunities after eating 
the dot

� Therefore, waiting seems 
just as good as eating

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of 
length 1 or less.  (DFS gives up on any path of 

length 2)

2. If “1” failed, do a DFS which only searches paths 

of length 2 or less.

3. If “2” failed, do a DFS which only searches paths 
of length 3 or less.

….and so on.

Why do we want to do this for multiplayer games?

…
b

27

28

Non-Zero-Sum Games

� Similar to 
minimax:

� Utilities are 

now tuples

� Each player 

maximizes 
their own entry 

at each node

� Propagate (or 

back up) nodes 
from children

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

29


