CS 188: Atrtificial Intelligence
Spring 2010

Lecture 7: Minimax and Alpha-Beta
Search

2/9/2010

Pieter Abbeel — UC Berkeley

Many slides adapted from Dan Klein

Announcements

= Section format

= Written 2: due Thursday

Simple two-player game example

Tic-tac-toe Game Tree

MAX (X)

MIN (0)
X

MAX (X)

MIN (0)

] [T
—
a) ‘
- [xpk] X[ofX]
TERMINAL | folix| A%
o) ‘I‘EE
-1 7' 0 a

utility

Deterministic Games

= Many possible formalizations, one is:
= States: S (start at s;)
—%= Players: P={1...N} (usually take turns)
—= Actions: A (may depend on player / state)
= Transition Function: SxA — S Fleex ZD‘
= Terminal Test: S — {t,f} .
- Terminal, Utiltes: SxP (010)
(—‘; 0
(1,-1)
. . &
= Solution for a player is a policy: S — A

Deterministic Single-Player?

= (Deterministic, single player,
rfec! rmation: 4
= Know the rules

= Know what actions do
= Know when you win
=" E.g. Freecell, 8-Puzzle, Rubik’s
cube :]
= ...it's just search!
= Slight reinterpretation:
= Each node stores a value: the
best outcome it can reach
= This is the maximal outcome of
its children (the max value)
= Note that we don’t have path
sums as before (utilities at end)
= After search, can pick move that
leads to best node

Deterministic Two-Player

= The other minimizes result
= Minimax search

= A state-space search tree

= Players alternate

= Each layer, or ply, consists of
around of moves*

= Choose move to position with
highest minimax value = best

Minimax Example

achievable utility against best yolgntly aiferent from
play
7
Minimax Search /
A

function MAX-VALUE(state) returns a utility value o
if TERMINAL-TEST(state) then return ULty (state)

1 — —OC,

oﬁorg;,s.in SUCCEssoRs(statgj)do u(u, g }—VALUE(S))

eturn v

Minimax Properties

function MIN-VALUE(stale) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)

Vg S
for a, sin SUCCESSORS(state) do m—@u, @-VALUE(s))

return v

Optimal against a perfect player. Otherwise?

Time complexity?

o)

Space complexity?

O(bm)

For chesi

b =~ 35, m =100,
Exact solution iscompletely infeasible

/17 But, do we need to explore the whole tree?

Pruning

Alpha-Beta Pruning

= General configuration

We're computing the MIN-
VALUE at n

We’'re looping over n's children
n's value estimate is dropping
ais the best value that MAX
can get at any choice point
along the current path

If n becomes worse than a,
MAX will avoid it, so can stop
considering n's other children
Define b similarly for MIN

MAX
MIN
MAX

MIN

Alpha-Beta Pseudocode

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
U —00
for a. sin SUCCESSORS(state) do v« MAaX(v, MIN-VALUE(s))

Qcturn v
: - ol-4

function @M{£ 3) returns a utility valuc

ey

inputs: state, current state inEame
~x>0, the value of the best alternative for MAX along the path to ‘sfufr]
e —a 13, the value of the best alternative for MiIN along the path to sfuf(:j
if TERMINAL-TEST(state) then return UTILITY(state)
ve——00 -
for a. sin SUCCESSORS(state) do PL
v —MAX(v, MIN-VALUE(s, @, 3)) ea—
if ¢ (20, then repurn s~ ”
a— Max(a, v) &~

return v

X

Alpha-Beta Pruning Properties

= This pruning has no effect on final result at the root

= Values of intermediate nodes might be wrong!
= Good child ordering improves effectiveness of pruning

= With “perfect ordering™: e
= Time complexity drops to O(@)
= Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

= This is a simple example of metareasoning (computing
about what to compute)

Alpha-Beta Pruning Example

Starting a/b E‘.ﬂo ,M]

ais MAX’s best alternative here or above
b is MIN’s best alternative here or above

Alpha-Beta Pruning Example

Starting a/b s ﬂ.

Raising a

Lowering b

as-co f=-co | a=)
b=+o0 b=3 |b=3\ b=3

Raising a ais MAX’s best alternative here or above

awe
o3 e b is MIN’s best alternative here or above

Resource Limits

= Cannot search to leaves

= Depth-limited search
= Instead, search a limited depth of tree

= Replace terminal utilities with an eval
function for non-terminal positions

—= Guarantee of optimal play is gone

=t More plies makes a BIG difference

= Example:

= Suppose we have 100 seconds, can
explore 10K nodes / sec
So can check 1M nodes per move

o-B reaches about depth 8 — decent
chess program

23

Evaluation Functions

= Function which scores non-terminals

Black to move . ~ White to move

White slightly better Black winning

= Ideal function: returns the utility of the position
= In practice: typically weighted linear sum of features: a/

(e Eval(s) =@fl(s) + w_gfg(s) + ...+ wnfn(s)
* e.g.fi(s) =(num white queens — num black queens), etc.

24

Why Pacman Can Starve

He knows his score will go
up by eating the dot now
He knows his score will go
up just as much by eating
the dot later on

There are no point-scoring
opportunities after eating
the dot

Therefore, waiting seems
just as good as eating

lterative Deepening

lterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less. (DFS gives up on any path of
length 2)

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If 2" failed, do a DFS which only searches paths
of length 3 or less.

....and so on.

Why do we want to do this for multiplayer games?

27

b&\c\‘;&: X\ -%’\W\a.\(

L,LLCE\ (MW Xx—x

28

Non-Zero-Sum Games

= Similar to

minimax:

= Utilities are

now tuples
Each player
maximizes
their own entry
at each node
Propagate (or
back up) nodes
from children

